Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2314274, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647521

RESUMO

A gate stack that facilitates a high-quality interface and tight electrostatic control is crucial for realizing high-performance and low-power field-effect transistors (FETs). However, when constructing conventional metal-oxide-semiconductor structures with two-dimensional (2D) transition metal dichalcogenide channels, achieving these requirements becomes challenging due to inherent difficulties in obtaining high-quality gate dielectrics through native oxidation or film deposition. Here, a gate-dielectric-less device architecture of van der Waals Schottky gated metal-semiconductor FETs (vdW-SG MESFETs) using a molybdenum disulfide (MoS2) channel and surface-oxidized metal gates such as nickel and copper is reported. Benefiting from the strong SG coupling, these MESFETs operate at remarkably low gate voltages, <0.5 V. Notably, they also exhibit Boltzmann-limited switching behavior featured by a subthreshold swing of ≈60 mV dec-1 and negligible hysteresis. These ideal FET characteristics are attributed to the formation of a Fermi-level (EF) pinning-free gate stack at the Schottky-Mott limit. Furthermore, authors experimentally and theoretically confirm that EF depinning can be achieved by suppressing both metal-induced and disorder-induced gap states at the interface between the monolithic-oxide-gapped metal gate and the MoS2 channel. This work paves a new route for designing high-performance and energy-efficient 2D electronics.

2.
Adv Mater ; 35(24): e2211525, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36930856

RESUMO

Heterosynaptic neuromodulation is a key enabler for energy-efficient and high-level biological neural processing. However, such manifold synaptic modulation cannot be emulated using conventional memristors and synaptic transistors. Thus, reported herein is a three-terminal heterosynaptic memtransistor using an intentional-defect-generated molybdenum disulfide channel. Particularly, the defect-mediated space-charge-limited conduction in the ultrathin channel results in memristive switching characteristics between the source and drain terminals, which are further modulated using a gate terminal according to the gate-tuned filling of trap states. The device acts as an artificial synapse controlled by sub-femtojoule impulses from both the source and gate terminals, consuming lower energy than its biological counterpart. In particular, electrostatic gate modulation, corresponding to biological neuromodulation, additionally regulates the dynamic range and tuning rate of the synaptic weight, independent of the programming (source) impulses. Notably, this heterosynaptic modulation not only improves the learning accuracy and efficiency but also reduces energy consumption in the pattern recognition. Thus, the study presents a new route leading toward the realization of highly networked and energy-efficient neuromorphic electronics.


Assuntos
Eletrônica , Molibdênio , Fenômenos Físicos , Eletricidade Estática , Sinapses
3.
Adv Mater ; 34(41): e2204982, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36000232

RESUMO

Van der Waals (vdW) heterostructures have drawn much interest over the last decade owing to their absence of dangling bonds and their intriguing low-dimensional properties. The emergence of 2D materials has enabled the achievement of significant progress in both the discovery of physical phenomena and the realization of superior devices. In this work, the group IV metal chalcogenide 2D-layered Ge4 Se9 is introduced as a new selection of insulating vdW material. 2D-layered Ge4 Se9 is synthesized with a rectangular shape using the metalcorganic chemical vapor deposition system using a liquid germanium precursor at 240 °C. By stacking the Ge4 Se9 and MoS2 , vdW heterostructure devices are fabricated with a giant memory window of 129 V by sweeping back gate range of ±80 V. The gate-independent decay time reveals that the large hysteresis is induced by the interfacial charge transfer, which originates from the low band offset. Moreover, repeatable conductance changes are observed over the 2250 pulses with low non-linearity values of 0.26 and 0.95 for potentiation and depression curves, respectively. The energy consumption of the MoS2 /Ge4 Se9 device is about 15 fJ for operating energy and the learning accuracy of image classification reaches 88.3%, which further proves the great potential of artificial synapses.

4.
Sci Adv ; 7(43): eabj3176, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34669464

RESUMO

Quantum confinement in transition metal dichalcogenides (TMDCs) enables the realization of deterministic single-photon emitters. The position and polarization control of single photons have been achieved via local strain engineering using nanostructures. However, most existing TMDC-based emitters are operated by optical pumping, while the emission sites in electrically pumped emitters are uncontrolled. Here, we demonstrate electrically driven single-photon emitters located at the positions where strains are induced by atomic force microscope indentation on a van der Waals heterostructure consisting of graphene, hexagonal boron nitride, and tungsten diselenide. The optical, electrical, and mechanical properties induced by the local strain gradient were systematically analyzed. The emission at the indentation sites exhibits photon antibunching behavior with a g(2)(0) value of ~0.3, intensity saturation, and a linearly cross-polarized doublet, at 4 kelvin. This robust spatial control of electrically driven single-photon emitters will pave the way for the practical implementation of integrated quantum light sources.

5.
Nano Lett ; 21(3): 1546-1554, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33502866

RESUMO

Single-photon emitters, the basic building blocks of quantum communication and information, have been developed using atomically thin transition metal dichalcogenides (TMDCs). Although the bandgap of TMDCs was spatially engineered in artificially created defects for single-photon emitters, it remains a challenge to precisely align the emitter's dipole moment to optical cavities for the Purcell enhancement. Here, we demonstrate position- and polarization-controlled single-photon emitters in monolayer WSe2. A tensile strain of ∼0.2% was applied to monolayer WSe2 by placing it onto a dielectric rod structure with a nanosized gap. Excitons were localized in the nanogap sites, resulting in the generation of linearly polarized single-photon emission with a g(2) of ∼0.1 at 4 K. Additionally, we measured the abrupt change in polarization of single photons with respect to the nanogap size. Our robust spatial and polarization control of emission provides an efficient way to demonstrate deterministic and scalable single-photon sources by integrating with nanocavities.

6.
Adv Mater ; 32(51): e2002092, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32985042

RESUMO

The memristor, a composite word of memory and resistor, has become one of the most important electronic components for brain-inspired neuromorphic computing in recent years. This device has the ability to control resistance with multiple states by memorizing the history of previous electrical inputs, enabling it to mimic a biological synapse in the neural network of the human brain. Among many candidates for memristive materials, including metal oxides, organic materials, and low-dimensional nanomaterials, 2D layered materials have been widely investigated owing to their outstanding physical properties and electrical tunability, low-power-switching capability, and hetero-integration compatibility. Hence, a large number of experimental demonstrations on 2D material-based memristors have been reported showing their unique memristive characteristics and novel synaptic functionalities, distinct from traditional bulk-material-based systems. Herein, an overview of the latest advances in the structures, mechanisms, and memristive characteristics of 2D material-based memristors is presented. Additionally, novel strategies to modulate and enhance the synaptic functionalities of 2D-memristor-based artificial synapses are summarized. Finally, as a foreseeing perspective, the potentials and challenges of these emerging materials for future neuromorphic electronics are also discussed.


Assuntos
Biomimética/instrumentação , Equipamentos e Provisões Elétricas , Sinapses/metabolismo , Desenho de Equipamento , Humanos , Nanotecnologia/instrumentação
7.
ACS Nano ; 14(9): 12064-12071, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32816452

RESUMO

Very recently, stacked two-dimensional materials have been studied, focusing on the van der Waals interaction at their stack junction interface. Here, we report field effect transistors (FETs) with stacked transition metal dichalcogenide (TMD) channels, where the heterojunction interface between two TMDs appears useful for nonvolatile or neuromorphic memory FETs. A few nanometer-thin WSe2 and MoTe2 flakes are vertically stacked on the gate dielectric, and bottom p-MoTe2 performs as a channel for hole transport. Interestingly, the WSe2/MoTe2 stack interface functions as a hole trapping site where traps behave in a nonvolatile manner, although trapping/detrapping can be controlled by gate voltage (VGS). Memory retention after high VGS pulse appears longer than 10000 s, and the Program/Erase ratio in a drain current is higher than 200. Moreover, the traps are delicately controllable even with small VGS, which indicates that a neuromorphic memory is also possible with our heterojunction stack FETs. Our stack channel FET demonstrates neuromorphic memory behavior of ∼94% recognition accuracy.

8.
Nano Lett ; 20(4): 2443-2451, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32191480

RESUMO

In optoelectronic devices based on two-dimensional (2D) semiconductor heterojunctions, the efficient charge transport of photogenerated carriers across the interface is a critical factor to determine the device performances. Here, we report an unexplored approach to boost the optoelectronic device performances of the WSe2-MoS2 p-n heterojunctions via the monolithic-oxidation-induced doping and resultant modulation of the interface band alignment. In the proposed device, the atomically thin WOx layer, which is directly formed by layer-by-layer oxidation of WSe2, is used as a charge transport layer for promoting hole extraction. The use of the ultrathin oxide layer significantly enhanced the photoresponsivity of the WSe2-MoS2 p-n junction devices, and the power conversion efficiency increased from 0.7 to 5.0%, maintaining the response time. The enhanced characteristics can be understood by the formation of the low Schottky barrier and favorable interface band alignment, as confirmed by band alignment analyses and first-principle calculations. Our work suggests a new route to achieve interface contact engineering in the heterostructures toward realizing high-performance 2D optoelectronics.

9.
Small ; 15(2): e1804303, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30548400

RESUMO

Ultralow power chemical sensing is essential toward realizing the Internet of Things. However, electrically driven sensors must consume power to generate an electrical readout. Here, a different class of self-powered chemical sensing platform based on unconventional photovoltaic heterojunctions consisting of a top graphene (Gr) layer in contact with underlying photoactive semiconductors including bulk silicon and layered transition metal dichalcogenides is proposed. Owing to the chemically tunable electrochemical potential of Gr, the built-in potential at the junction is effectively modulated by absorbed gas molecules in a predictable manner depending on their redox characteristics. Such ability distinctive from bulk photovoltaic counterparts enables photovoltaic-driven chemical sensing without electric power consumption. Furthermore, it is demonstrated that the hydrogen (H2 ) sensing properties are independent of the light intensity, but sensitive to the gas concentration down to the 1 ppm level at room temperature. These results present an innovative strategy to realize extremely energy-efficient sensors, providing an important advancement for future ubiquitous sensing.

10.
Adv Mater ; 30(35): e1801447, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30015988

RESUMO

The development of energy-efficient artificial synapses capable of manifoldly tuning synaptic activities can provide a significant breakthrough toward novel neuromorphic computing technology. Here, a new class of artificial synaptic architecture, a three-terminal device consisting of a vertically integrated monolithic tungsten oxide memristor, and a variable-barrier tungsten selenide/graphene Schottky diode, termed as a 'synaptic barrister,' are reported. The device can implement essential synaptic characteristics, such as short-term plasticity, long-term plasticity, and paired-pulse facilitation. Owing to the electrostatically controlled barrier height in the ultrathin van der Waals heterostructure, the device exhibits gate-controlled memristive switching characteristics with tunable programming voltages of 0.2-0.5 V. Notably, by electrostatic tuning with a gate terminal, it can additionally regulate the degree and tuning rate of the synaptic weight independent of the programming impulses from source and drain terminals. Such gate tunability cannot be accomplished by previously reported synaptic devices such as memristors and synaptic transistors only mimicking the two-neuronal-based synapse. These capabilities eventually enable the accelerated consolidation and conversion of synaptic plasticity, functionally analogous to the synapse with an additional neuromodulator in biological neural networks.

11.
Med Phys ; 39(5): 2396-404, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22559609

RESUMO

PURPOSE: The authors developed a video image-guided real-time patient motion monitoring (VGRPM) system using PC-cams, and its clinical utility was evaluated using a motion phantom. METHODS: The VGRPM system has three components: (1) an image acquisition device consisting of two PC-cams, (2) a main control computer with a radiation signal controller and warning system, and (3) patient motion analysis software developed in-house. The intelligent patient motion monitoring system was designed for synchronization with a beam on/off trigger signal in order to limit operation to during treatment time only and to enable system automation. During each treatment session, an initial image of the patient is acquired as soon as radiation starts and is compared with subsequent live images, which can be acquired at up to 30 fps by the real-time frame difference-based analysis software. When the error range exceeds the set criteria (δ(movement)) due to patient movement, a warning message is generated in the form of light and sound. The described procedure repeats automatically for each patient. A motion phantom, which operates by moving a distance of 0.1, 0.2, 0.3, 0.5, and 1.0 cm for 1 and 2 s, respectively, was used to evaluate the system performance. The authors measured optimal δ(movement) for clinical use, the minimum distance that can be detected with this system, and the response time of the whole system using a video analysis technique. The stability of the system in a linear accelerator unit was evaluated for a period of 6 months. RESULTS: As a result of the moving phantom test, the δ(movement) for detection of all simulated phantom motion except the 0.1 cm movement was determined to be 0.2% of total number of pixels in the initial image. The system can detect phantom motion as small as 0.2 cm. The measured response time from the detection of phantom movement to generation of the warning signal was 0.1 s. No significant functional disorder of the system was observed during the testing period. CONCLUSIONS: The VGRPM system has a convenient design, which synchronizes initiation of the analysis with a beam on/off signal from the treatment machine and may contribute to a reduction in treatment error due to patient motion and increase the accuracy of treatment dose delivery.


Assuntos
Movimento , Radioterapia/métodos , Algoritmos , Humanos , Imagens de Fantasmas , Software , Fatores de Tempo , Gravação em Vídeo
12.
Artigo em Inglês | MEDLINE | ID: mdl-19963498

RESUMO

This paper introduces a new approach to process biomedical signals by surgically removing wave deflections in time domain. The method first determines the epochs of high frequency deflections, cuts out them from the signal, and then connects the two disconnected points. To determine the epoch of a deflection to be removed, four slope trace waves are used to isolate the deflection based on signal characteristics of amplitude, slope, duration, and distance from neighboring deflections. The method has been applied to simulated data and MIT-BIH arrhythmia database to show its practical efficacy in the case of baseline wandering removal. It is found that the method has the capability to identify and remove high frequency deflections appropriately, leaving low frequency deflection such as baseline drifting.


Assuntos
Algoritmos , Eletrocardiografia/estatística & dados numéricos , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/fisiopatologia , Engenharia Biomédica , Bases de Dados Factuais , Diagnóstico por Computador , Humanos , Processamento de Sinais Assistido por Computador
13.
Artigo em Inglês | MEDLINE | ID: mdl-19964566

RESUMO

In this paper a simple signal segmentation algorithm is introduced. The algorithm determines the epochs of signal components of interest based on signal characteristic such as amplitude, slope, deflection width, or distance between neighboring deflections. The epochs are segmented indirectly by means of a slope trace wave that traces a signal with its average slope and predetermined delay. The algorithm is applied to ECG and electrogram to show its practical applicability and efficiency. It is found that the algorithm can be used to choose particular signal components appropriately without significant signal preprocessing or complexity.


Assuntos
Eletrocardiografia/métodos , Algoritmos , Compressão de Dados/métodos , Átrios do Coração , Humanos , Aumento da Imagem/métodos , Modelos Estatísticos , Rede Nervosa , Reconhecimento Automatizado de Padrão/métodos , Transdução de Sinais
14.
Taehan Kan Hakhoe Chi ; 8(3): 327-30, 2002 Sep.
Artigo em Coreano | MEDLINE | ID: mdl-12499792

RESUMO

Refractory hepatic hydrothorax has been treated by conservative methods: salt and water restriction, diuretics, thoracentesis, thoracostomy, and pleurodesis. The results, however, havebeen disappointing. Recently, TIPS has emerged as a new method for refractory hepatic hydrothorax, but it may lead to fatal complications. We report a case of refractory hepatic hydrothorax that was not treated by TIPS despite of successful control of ascitest.


Assuntos
Hidrotórax/terapia , Hepatopatias/complicações , Adulto , Feminino , Humanos , Hidrotórax/etiologia , Derivação Portossistêmica Transjugular Intra-Hepática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...